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Some simple special Bäcklund transformation theorems are proposed and utilized to
obtain exact solutions for the (2 + 1)-dimensional Euler equation. It is found that the
(2 + 1)-dimensional Euler equation possesses abundant soliton or solitary wave struc-
tures, conoid periodic wave structures and the quasi-periodic Bessel wave structures
on account of the arbitrary functions in its solutions. Moreover, all solutions of the
arbitrary two dimensional nonlinear Poisson equation can be used to construct exact
solutions of the (2 + 1)-dimensional Euler equation.
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1. INTRODUCTION

It is well known that the most general governing equation in fluid dynamics
is the Navier-Stockes (NS) equation (Fefferman, 2000; Groisman and Quake,
2004; Pedrizzetti, 2005; Saveliev and Gorokhovski, 2005; Sundkvist et al., 2005).
In many cases, the viscocity of the fluids is quite small and may be neglectable,
which reduces the NS equation to the Euler equation. In addition to its fundamental
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application in fluids, the Euler equation can also manipulate many other physical
fields such as the plasmas, condense matters, astrophysics, etc. (Babaev et al.,
2004; Bergmans and Schep, 2001; Bonazzola et al., 1997; Cafaro et al., 1998;
Canuto and Dubovikov, 2005; Chavanis, 2000; Chavanis and Sommeria, 1997;
Chuang et al., 1991; Del Sarto et al., 2003; Faddeev et al., 2003; Girard et al., 2005;
Gluhovsky and Agee, 1997; Grasso et al., 2001; Haldane and Wu, 1985; Huang
et al., 1998; Kurien et al., 2000; Kuvshinov et al., 1994, 1999; Leggett, 2001;
Marshall et al., 1997; Niemi, 2005; Thiffeault and Morrison, 2002; Weichman
and Petrich, 2001; Xu et al., 2005). Consequently, to find exact solutions of the
Euler equation is very important and crucial both in mathematics and in real
physical applications. This equation is known to have a lot of exact analytical
solutions. Some of them can be found in the classical book of H. Lamb (1945). In
Abrashkin and Yakubovich (1984), the authors have studied the planar rotational
flows of an ideal fluid and the addressing method is developed to get exact solutions
of the Euler equation in Yurov and Yurova (2006).

Under some different approximate assumptions, various integrable models
such as the Burgers, KdV, modified KdV, nonlinear Schrödinger, KP and DS
equations can be derived form the Euler or NS equation (Calogero and Ji, 1991,
1993; Kivshar and Malomed, 1989). Beginning with these integrable models, the
existences of different kinds of solitons and/or solitary waves are proved and/or
predicted.

This paper aims to find some types of exact solutions of the Euler equation
in an alternative way. The results are derived by a simple and essential tech-
nique, Bäcklund transformation. The Bäcklund transformation approach has been
widely used to find exact solutions for various integrable systems. There are some
excellent books on the Bäcklund transformations, say (Rogers and Schief, 2002).

In Li (2001, 2003); Li and Shvidkoy (2004); Li and Yurov (2003), the authors
write the (2 + 1)-dimensional Euler equation in a vorticity form

� = ψxx + ψyy ≡ �ψ, (1)

�t + [ψ, �] = 0, [ψ, �] ≡ ψx�y − ψy�x, (2)

where � is the vorticity, ψ is the stream function and they are linked to the velocity
field {u, v} by

u = −ψy, v = ψx, � = vx − uy = �ψ. (3)

We will write down the Bäcklund transformation theorems for the Euler
equation (1)–(2) in the next section. With the help of the Bäcklund transformations,
some types of exact solutions, including the travelling wave solutions, solitary
waves, different types of the conoid periodic waves, the Bessel waves and the
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interaction solutions of the conoid periodic waves with some related explicit
figures are also delivered in Section 2. Lastly, the paper ends with brief summary
and discussions.

2. BÄCKLUND TRANSFORMATIONS AND SPECIAL
EXACT SOLUTIONS

Theorem 1. If {�0, ψ0} is a solution of the Euler equation (1)–(2), so is {�1, ψ1}
under the definition

�1 = �0 + q, ψ1 = ψ0 + p, (4)

where {p, q} is a solution of

q = �p, (5)

qt + [p, q] + [ψ0, q] + [p, �0] = 0. (6)

Proof: Direct calculations.
The next key step to find exact solutions from known ones is to make some

further ansatzs for the functions q and/or p. In the present stage, we put a constraint
between q and p as general as

q = Q(p). (7)

Using the above assumption (7) and Theorem 1, we may have a much simplified
Bäcklund transformation theorem:

Theorem 2. If {�0, ψ0} is a solution of the Euler equation (1)–(2), so is {�1, ψ1}
with the definition

�1 = �0 + Q(p), ψ1 = ψ0 + p, (8)

where Q(p) is an arbitrary function and p is a solution of the over-determined
equation system

�p = Q(p), (9)

pt + [ψ0, p] = 0, (10)

[p, �0] = 0. (11)
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Proof: Substituting the assumption (7) to the equation (6) of the theorem 1, we
have

(pt + [ψ0, p])Qp + [p, �0] = 0, (12)

where Qp ≡ dQ

dp
. It is straightforward to see that (12) is correct for arbitrary Q(p)

iff (if and only if) (10) and (11) are satisfied simultaneously. As for Eq. (9), it is
just a simple combination of (5) and (7). Therefore, the Theorem 2 is completely
proved.

The equivalent result of the Theorem 2 can also be obtained by other methods,
say the dressing method (Yurov and Yurova, 2006).

Although the Bäcklund transformation Theorem 2 has been much simplified,
it is still rather difficult to construct some exact solutions via it with a complicated
known solution. So here, we just make use of a very special and simple seed
solution, namely, the constant vorticity solution

�0 = ω (ω is constant) (13)

to get some significant solutions of the (2 + 1)-dimensional Euler equation.
It is easy to verify that (11) is identically satisfied under the constant vorticity

solution (13) and that the corresponding general solution for the stream function
ψ0 has the form of (i ≡ √−1)

ψ0 = ω

4
(x2 + y2) + f1(x + iy, t) + f2(x − iy, t), (14)

where f1 ≡ f1(x + iy, t) ≡ f1(z, t) and f2 ≡ f2(x − iy, t) ≡ f2(z∗, t) are arbi-
trary functions of the indicated variables. Obviously, ψ0 is assured to be real on
condition that f2 is a complex conjugate of f1 and vice versa.

Substituting (14) into (10), we have

pt + ω

2
(xpy − ypx) + if2z∗ (px − ipy) − if1z(px + ipy) = 0, (15)

i.e.,

ipt + ω

2
(z∗pz∗ − zpz) + 2(f1zpz∗ − f2z∗pz) = 0. (16)

In order to solve the remaining equation (15) or (16) and then (9), we need
to specify f1, f2 and ω further.
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2.1. Exact Solutions Obtained from the Time Dependent Homogeneous Flow

It is clear that the (2 + 1)-dimensional Euler equation (1)–(2) permits a time
dependent homogeneous flow solution

u = −b(t), v = a(t), (17)

i.e.,

ψ0 = a(t)x + b(t)y, �0 = 0, (18)

where a(t) and b(t) are arbitrary functions with respect to time t . Accordingly, in
the present case, the arbitrary constant and functions in the vorticity and stream
function solutions (13) and (14) are determined as

ω = 0, f1 = 1

2
(a(t) − ib(t))z, f2 = 1

2
(a(t) + ib(t))z∗.

Hence, (15) (or (16)) becomes

pt + a(t)py − b(t)px = 0, (19)

whose general solution possesses the form

p = p

(
x +

∫
b(t)dt, y −

∫
a(t)dt

)
≡ P (X, Y ), (20)

where P (X, Y ) is an arbitrary function of {X, Y } and will be determined by
substituting (20) into (9).

The above result can be summarized as the following theorem:

Theorem 3. If P (X, Y ) ≡ P is a solution of the nonlinear Poisson equation

PXX + PYY = Q(P ) (21)

with Q(P ) being an arbitrary function of P and X = x + ∫
b(t)dt, Y = y −∫

a(t)dt , then {�, ψ} given by

� = Q(P ), (22)

ψ = a(t)x + b(t)y + P (23)

is a solution of the (2 + 1)-dimensional Euler equation (1)–(2).
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Generally, under any given function Q(P ), the nonlinear Poisson equation
(21) (similar to the nonlinear Klein-Gordon equation) is nonintegrable. However,
one can still find some exceptions that (21) is integrable only if Q(P ) is one of
the following types of expressions

a0 + a1P, a0e
a1P , a0 sin(a1P ),

a0 sinh(a1P ), a0e
−a1P + a2e

2a1P ,

where a0, a1 and a2 are arbitrary constants.
It is noted that a special case of Theorem 3 when a(t) and b(t) are just

arbitrary constants has been deduced from a Darboux transformation with zero
spectral parameter (Lou and Li, 2006).

Now we manage to obtain many soliton, solitary wave and conoid periodic
wave solutions for the (2 + 1)-dimensional Euler equation (1)–(2) through differ-
ent selections of Q(P ). Here, we just list some special examples without further
details on the calculations.

Example 1 Travelling wave solutions of the Poisson equation. The general form
of the travelling wave solution of the Poisson equation can be written as an integral
form

∫ P
√

(1 + c2)

2
∫

Q(µ)dµ − V0
dµ = X0, (24)

where

X0 = x + cy +
∫

[b(t) − ca(t)]dt − x0, (25)

and c, x0, V0 are arbitrary constants.

For some special types of selections of Q and the integral constant V0, the integral
form (24) can be rewritten as some types of Jacobi elliptic functions. For instance,

P = P1 = 4 arctan

(√
n sn

√
m X0

(1 + n)
√

1 + c2

)
(26)

for the Poisson sine selection

Q(P ) = −m sin P, (27)
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Fig. 1. (a) A special conoidal sn wave for the stream function ψ given by (23) with (25), (26) and
(28) at time t = 0. (b) and (c) are the vorticity and velocity structures corresponding to (a).

where n is the modulus of the Jacobi sn function and the corresponding V0 reads

V0 = 2m(n2 − 6n + 1)

n2 + 1
.

Figure 1a displays the structure for the stream function ψ (23) with (26)
under the function and parameter selections

a(t) = b(t) = m = 1, c = 2, n = 0.9 (28)

at time t = 0. The corresponding vorticity structure � and the velocity field
{u = −ψy, v = ψx} are shown in Fig. 1b and c respectively.

It is known that when the modulus n of the Jacobi elliptic function tends to 1,
the conoidal wave tends to a soliton or solitary wave solution. Figure 2a–c exhibit
the solitary wave structure for the stream, vorticity and velocity respectively under
the same function and parameter selections (28) except for n = 1.
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Fig. 2. A special soliton structure for (a) the stream function, (b) the voticity and (c) velocity vector
which are limit cases of Fig. 1a–c respectively with n = 1.

Naturally, different selections of the arbitrary function Q(P ) will lead to
different type of periodic and solitary waves (Hesthaven et al., 1995).

Example 2 Interactions among two conoidal periodic waves. To find non-
travelling wave solutions of the nonlinear Poisson equation (21) is much more
involved and complicated.

Here we only write down one special two conoidal periodic wave interaction
solution which is nonsingular for the Poisson sine equation. It is easy to prove
that if we choose the function Q(P ) as the form of

Q(P ) = c2
1 + c2

2

n1

(
n1

(
2 − n2

2

) + (
2n2

1 − 1
)√1 − n2

2

1 − n2
1

)
sin P (29)
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with four arbitrary constants c1, c2, n1 and n2, then a two-conoidal periodic wave
interaction solution can be produced

P = 4 arctan

(
4

√
n2

1(1 − n2
2)

1 − n2
1

cn(X1, n1)

dn(Y1, n2)

)
, (30)

where arbitrary constants n1 and n2 are the moduli of the Jacobi cn and dn functions
respectively and

X1 = 4

√
1 − n2

2

n2
1(1 − n2

1)

[
c1x + c2y +

∫
(c1b(t) − c2a(t))dt

]
,

Y1 = c2x − c1y +
∫

(c2b(t) + c1a(t))dt.

Figure 3 depicts a special picture on the conoidal cn-dn interaction wave
given by (30) with the special selections

a(t) = b(t) = c1 = 1, c2 = 1.5, n1 = n2 = 0.99 (31)

at time t = 0, with the structures of the stream function, voticity and velocity
vector field distributed respectively in Fig. 3a–c.

In fact, for the (2 + 1)-dimensional sine-Gordon equation, many kinds of
singular double periodic solutions have been found in literature, say, (Vitanov,
1996).

If we select Q(P ) as the sinh function instead of the sine function, some
authors have obtained many double periodic solutions (Chow et al., 2003; Gurarie
and Chow, 2004; Kuvshinov and Schep, 2000). So we will not list the exact
solutions on the Poison sinh equation here though the independent variables are
different in this paper.

2.2. Exact Special Solutions Obtained from the Constant Nonzero Vorticity
Field

In principle, the stream function corresponding to a constant nonzero vorticity
is in the form (14). In order to get some explicit results, we choose the arbitrary
functions f1 and f2 as simple as

f1 = (a + ib)z, f2 = f ∗
1 = (a − ib)z∗, (32)

where a and b are arbitrary constants.
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Fig. 3. (a) The conoidal cn-dn wave interaction solution for the stream function of the (2 + 1)-
dimensional Euler equation described by (23) with (30) and (31) at time t = 0. (b) The corresponding
vorticity structure related to (a). (c) The velocity vector field related to the stream shown in (a).

Substituting (32) into (15), we can solve out that

p = P (ξ, η),

ξ ≡ 1

ω
[(ωx + a)2 + (ωy − b)2], (33)

η ≡ t + 1

2ω
arctan

a + ωx

b − ωy
,
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where P is a function of {ξ, η} and determined by substituting (33) to (9), i.e.,

Q(P ) = 4ωξPξξ + 4ωPξ + 1

4ωξ
Pηη. (34)

In fact, a special case, a = b = 0, ω = 1, for (33) and (34) has also been obtained
via Darboux transformation in Lou and Li (2006).

To solve (34), one has to fix Q(P ) in some particular forms. Here we just
take

Q(P ) = −a1ω
2P. (35)

Thanks to the special selection (35), (34) can be resolved by means of the variable
separation approach. The result reads

P =
N∑

i=1

cos (2ciω(η − η0)) [diJci
(ρ) + eiNci

(ρ)], (36)

where

ρ =
√

a1(ωx + a)2 + a1(ωy − b)2,

N is an arbitrary positive integer, ci, di, ei, ηi, (i = 1, 2, . . . , N) and a1 are
arbitrary constants, Jci

(ρ) and Nci
(ρ) are ci th order Bessel and Neumann functions

of ρ respectively.
Figure 4a–c display a special Bessel wave structure for the stream, vorticity

and velocity respectively with the parameter selections

N = a = a1 = b = 1, ω = 1

2
, c1 = 4,

e1 = η1 = 0, d1 = 160 (37)

at time t = 0.
In the static case, by taking

� =
{

λ2ψ, r =
√

x2 + y2 ≤ R,

0, r > R,
(38)

which is different from (35) for r > R, the so-called Lamb-dipole solution that is
described by a single Bessel function solution J1(λr) inside the circle r ≤ R has
been obtained (Nielsen and Rasmussen, 1997). Our general solution is different
from the Lamb-dipole solution not only in its time dependence, but also in other
two aspects, the vorticity is non-zero outside the circle r > R and the solution is
described by general superpositions of various arbitrary Bessel waves.
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Fig. 4. (a) The structure of a Bessel wave solution for the stream function of the (2 + 1)-dimensional
Euler equation expressed by (23) with (36) and (37) at time t = 0. (b) and (c) are the plots of vorticity
and velocity related to (a).

3. SUMMARY AND DISCUSSIONS

An ordinary Bäcklund transformation theorem is put forward to derive exact
explicit analytical solutions though the starting idea is so simple that might be
valid for all the equations. The possibility of getting some significant results is
decided by a further key step, ansatz (7), which reduces the non-usable and trivial
Theorem 1 to a much simpler and applicable Theorem 2. Furthermore, we restrict
ourselves to the constant vorticity seed solution both zero and nonzero.

The zero vorticity, equivalent to the space independent velocity field seed
solution engenders the interesting solution Theorem 3. From the Theorem 3, we
know that any solution of an arbitrary nonlinear Poisson equation will result in an
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exact solution of the (2 + 1)-dimensional Euler equation, which indicates the ideal
fluid (fluid without viscocity) and nearly ideal fluid (fluid with small viscocity)
possesses fruitful wave patterns. This is one of the main reasons why various
integrable models can be reasonably deduced from the Euler and/or NS equation
to approximately describe the real fluid.

Guaranteed by the Theorem 3, making advantage of some special nonlinear
Poisson equations such as the Poisson sine equation, some particular types of
solitons, solitary waves, periodic waves and two-periodic interaction waves can
be created. It is stressed here once again that some special forms of the results
presented in this paper have also been produced by the Darboux transformation
approach (Lou and Li, 2006) with help of the known weak Lax pair (Li, 2001,
2003; Li and Shvidkoy, 2004; Li and Yurov, 2003).

In the literature (Jia et al., 2006; Lou et al., 2005), two types of the Dar-
boux transformation Theorems have been given for the (3 + 1)-dimensional Euler
equation. We believe that similar rich properties of the solution structures for the
(3 + 1)-dimensional Euler equation can also be obtained by some types of simple
direct methods. Because of the wide applications of the both (2 + 1)- and (3 + 1)-
dimensional Euler equations, the more about their exact solutions are worthy of
further study.

The work was supported by the National Natural Science Foundations of
China (Nos. 90203001, 10475055, 90503006 and 10675065). The authors are in
debt to thank Profs. Y. S. Li and Y. Chen for their instructive discussions.

REFERENCES

Abrashkin, A. A. and Yakubovich, E. I. (1984). Sov. Phys. Dokl. 276, 370.
Babaev, E., Sudbø, A., and Ashcroft, N. W. (2004). Nature (London) 431, 666.
Bergmans, J. and Schep, T. J. (2001). Physical Review Letters 87, 195002.
Bonazzola, S., Gourgoulhon, E., and Marck, J. A. (1997). Physical Review D 56, 7740.
Cafaro, E., et al. (1998). Physical Review Letters 80, 4430.
Calogero, F. and Ji, X. D. (1991a). Journal of Mathematical Physics 32, 875.
Calogero, F. and Ji, X. D. (1991b). Journal of Mathematical Physics 32, 2703.
Calogero, F. and Ji, X. D. (1993). Journal of Mathematical Physics 34, 5810.
Canuto, V. M. and Dubovikov, M. S. (2005). Ocean Modelling 8, 1.
Chavanis, P. H. (2000). Physical Review Letters 84, 5512.
Chavanis, P. H. and Sommeria, J. (1997). Physical Review Letters 78, 3302
Chow, K. W., Tsang, S. C., and Mak, C. C. (2003). Physics of Fluids 15, 2437.
Chuang, I., Durrer, R., Turok, N., and Yurke, B. (1991). Science 251, 1336.
Del Sarto, D., Califano, F., and Pegoraro, F. (2003). Physical Review Letters 91, 235001.
Faddeev, L., Niemi, A. J., and Wiedner, U hep-ph/0308240.
Fefferman, C. L. (2000). Existence and smoothness of Navier-Stokes equation, http://www.

claymath.org/millennium/Navier-Stokes Equations /Official Problem Description.pdf.
Girard, C., Benoit, R., and Desgagne, M. (2005). Monthly Weather Review 133, 1463.
Gluhovsky, A. and Agee, E. (1997). Journal of the Atmospheric Sciences 54, 768.
Grasso, D., Califano, F., Pegoraro, F., and Porcelli, F. (2001) Physical Review Letters 86, 5051.



Bessel Waves of The (2 + 1)-Dimensional Eulerquation 2095

Groisman, A. and Quake, S. R. (2004) Physical Review Letters 92, 094501.
Gurarie, D. and Chow, K. W. (2004). Physics of Fluids 16, 3296.
Haldane, F. D. M. and Wu, Y. (1985). Physical Review Letters 55, 2887.
Hesthaven, J. S., Lynov, J. P., Nielsen, A. H., Rasmussen, J. J., Schmidt, M., Shapiro, E. A., and

Turitsyn, S. K. (1995). Physics of Fluids 7, 2220.
Huang, T. S., Ho, C. W., and Alexander, C. J. (1998). Journal of Geophysical Research-Planets (E9)

103, 20267.
Jia, M., Lou, C., and Lou, S. Y. (2006). Chinese Physics Letters 23, 2878.
Kivshar, Yu. S. and Malomed, B. A. (1989). Reviews of Modern Physics 61, 763.
Kurien, S., L’vov, V. S., Procaccia, I., and Sreenivasan, K. R. (2000). Physical Review E 61, 407.
Kuvshinov, B. N. and Schep, T. J. (2000). Physics of Fluids 12, 3282.
Kuvshinov, B. N., Pegoraro, F., and Schep, T. J. (1994). Physics Letters A 191, 296.
Kuvshinov, B. N., Pegoraro, F., Rem, J., and Schep, T. J. (1999). Physics of Plasmas 6, 713.
Lamb, H. (1945). Hydrodynamics 6th edn. (Dover, New York).
Leggett, A. J. (2001). Reviews of Modern Physics 73, 307.
Li, Y. G. (2001). Journal of Mathematical Physics 42, 3552.
Li, Y. G. (2003). Acta Applied Mathematics 77, 181.
Li, Y. G. and Shvidkoy, R. (2004). Journal of Mathematical Analysis and Applications 292, 311.
Li, Y. G. and Yurov, A. V. (2003). Studies in Applied Mathematics 111, 101.
Lou, S. Y. and Li, Y. S. (2006). Chinese Physics Letters 23, 2633.
Lou, S. Y., Tang, X. Y., Jia, M., and Huang, F. (2005). Vortices, circumfluence, symmetry groups and

Darboux transformations of the Euler equations, nlin.PS/0509039.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C. (1997). Journal of Geophysical

Research Oceans (C3) 102, 5753.
Nielsen, A. H. and Rasmussen, J. J. (1997). Physics of Fluids 9, 982.
Niemi, A. J. (2005). Physical Review Letters 94, 124502.
Pedrizzetti, G. (2005). Physical Review Letters 94, 194502.
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